首页> 外文OA文献 >Flexible Transparent Electrodes based on Silver Nanowire Networks: Nanoscale Characterisation, Electrical Percolation, and Integration into Devices
【2h】

Flexible Transparent Electrodes based on Silver Nanowire Networks: Nanoscale Characterisation, Electrical Percolation, and Integration into Devices

机译:基于银纳米线网络的柔性透明电极:纳米级表征,电渗流和集成到设备中

摘要

The most efficient and widely used transparent conducting material (TCM) is currently indium tin oxide (ITO). However the indium scarcity associated to the lack of flexibility of ITO as well as relatively high cost of fabrication has prompted the search for alternative low cost and flexible materials. Among emerging transparent electrodes (TEs), silver nanowire (AgNW) networks appear as a promising substitute to ITO since these percolating networks exhibit high flexibility and excellent optoelectronic properties [1], with sheet resistance of a few Ω/sq and optical transparency of 90%, fulfilling the requirements for many applications such as solar cells, OLED displays, transparent heaters, or radio-frequency (RF) antennas and transparent shielding [2]. In addition, the fabrication of these electrodes involves low-temperature process steps and upscaling methods, thus making them very appropriate for future use as TE for flexible devices.Our research is focused on the fundamental understanding of the physical phenomena taking place at the scales of both the network (macroscale) and the NW-to- NW junctions (nanoscale), and on the ability of AgNW networks to be integrated as transparent electrodes for flexible optoelectronic and RF devices. In-situ electrical measurements performed during optimisation process such as thermal annealing and/or chemical treatments provide useful information regarding the activation process of the junctions [3]. Besides, nano-characterisation techniques such as Transmission Electron Microscopy (TEM) and ultramicrotomy help visualizing the physical phenomena involved in the diffusion of silver atoms to create well-sintered junctions. At the network’s scale, our ability to distinguish the nanowires taking part in the electrical conduction (“electrical percolating pathways”) from the inactive nanowires is a critical issue for the applications. By combining experimental and simulation studies, a discrete activation process of efficient percolating pathways through the network was evidenced. In the case where the network density is close to the percolation threshold and when low voltage is applied, individual “illuminated” pathways can be detected through the network while new branches get activated as soon as the voltage is increased.Here we will present our results on the study of AgNW networks at the macro and nano scales described above and will correlate it with the overall performance/characteristics of the networks. We will also present results on the integration of optimized AgNW networks into functional devices.[1] D.P. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.-P. Simonato, Nanotechnology, 24, 452001, (2013).[2] C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella and J.-P. Simonato, Nano Res. 5, 427, (2012).[3] M. Lagrange, D.P. Langley, G. Giusti, C. Jimenez, Y. Bréchet, D. Bellet, Nanoscale 7, 17410, (2015).
机译:目前,最有效和使用最广泛的透明导电材料(TCM)是氧化铟锡(ITO)。然而,与ITO缺乏柔性以及相对较高的制造成本相关的铟稀缺促使人们寻求替代的低成本和柔性材料。在新兴的透明电极(TE)中,银纳米线(AgNW)网络似乎可以替代ITO,因为这些渗透网络显示出高柔韧性和出色的光电性能[1],薄层电阻为几Ω/ sq,光学透明度为90 %,可以满足许多应用的要求,例如太阳能电池,OLED显示器,透明加热器或射频(RF)天线和透明屏蔽[2]。此外,这些电极的制造涉及低温工艺步骤和扩大规模的方法,因此使其非常适合将来用作柔性器件的TE。我们的研究集中在对发生在纳米尺度上的物理现象的基本理解上。网络(宏尺度)和NW到NW结(纳米尺度),以及AgNW网络被集成为透明电极以用于柔性光电和RF设备的能力。在优化过程(例如热退火和/或化学处理)过程中执行的原位电测量可提供有关结激活过程的有用信息[3]。此外,诸如透射电子显微镜(TEM)和超薄切片术之类的纳米表征技术有助于可视化涉及银原子扩散以形成烧结良好的结的物理现象。在网络规模上,我们区分参与导电的纳米线(“电渗流途径”)与不活动的纳米线的能力是应用程序中的关键问题。通过结合实验和模拟研究,证明了通过网络的有效渗透途径的离散活化过程。在网络密度接近渗透阈值且施加低电压的情况下,可以通过网络检测单个“照亮”路径,而一旦电压增加,新分支就会被激活。在这里,我们将介绍我们的结果在上面描述的宏观和纳米尺度上研究AgNW网络,并将其与网络的整体性能/特性相关联。我们还将介绍将优化的AgNW网络集成到功能设备中的结果。[1] D.P.兰利(Langley),古斯(G.Giusti),马约塞(C.Mayousse),策勒(C.Celle),贝勒(D. Simonato,纳米技术,24,452001,(2013年)。[2] C. Celle,C。Mayousse,E。Moreau,H。Basti,A。Carella和J.-P.。西蒙纳托,纳米水库。 5,427,(2012)。[3]拉格朗日(D.P. Langley,G.Giusti,C.Jimenez,Y.Bréchet,D.Bellet,Nanoscale 7,17410,(2015)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号